References


doi:10.1016/j.antiviral.2009.02.051

47

Use of the BelloCell System to Determine the Optimal Dose of Ribavirin to Inhibit the Expression of an HCV Replicon in 2209-23 Cells

James McSharry1, Diane Singer, Robert Kulawy, Ashley Brown, George Drusano

Ordway Research Institute, Albany, USA

Introduction: To use antiviral compounds effectively for the treatment of hepatitis C virus (HCV) infections in man, one must know the optimal dose and schedule of administration of compounds that will inhibit virus replication without leading to the emergence of resistant viruses. We used the BelloCell system to determine the optimal dose of ribavirin that will inhibit the in vitro expression of an HCV replicon in 2209-23 cells.

Methods: HCV replicon containing 2209-23 cells were obtained from Roche Pharmaceuticals Inc., Palo Alto, CA. The replicon contains a neomycin gene for its detection and quantitation by RT-PCR and a luciferase gene for its detection and quantitation using the Renillin Luciferase Assay. To determine a dose response of ribavirin, 104 2209-23 cells were added to each of four BelloCell systems containing DMEM supplemented with 10% fetal bovine serum. The systems were incubated at 37 °C, 5% CO2 for 7–10 days. One unit was continuously infused with medium without ribavirin, the others contained either 10, 20 or 40 μM ribavirin. Fresh ribavirin was added daily. PK/PD analysis of the concentration of ribavirin in each unit was determined daily by LC/MS/MS. Each day, 20 flasks were taken from each BelloCell unit, the cells were removed with trypsin/EDTA, counted, normalized to 5000 cells and the luciferase activity in these cells was determined using a luminometer. The HCV replicons in the remainder of the cells were quantified by kinetic RT-PCR.

Results: The EC50 value for ribavirin for this replicon system is about 20 μM when determined in the standard 96 well format. A similar EC50 value was found when these replicon containing cells were treated with various concentrations of ribavirin in the BelloCell system.

Conclusion: The results of this proof-of-principle study suggest that the BelloCell system can be used to determine the dose of antiviral compounds effective against HCV. With knowledge of the EC50 values, the BelloCell system could be used to perform a dose fractionation assay to determine the pharmacodynamically linked variable for antiviral compounds effective against hepatitis C virus.

doi:10.1016/j.antiviral.2009.02.052

48

Silibinin (Legalon-SIL) Inhibits HCV Replication In Vitro

Isabel Najera1,∗, Vincent Leveque1, Matt McCown1, Julie Q. Hang1, Han Ma1, Sonal Rajayaguru1, Amy Fung1, Yanli Yang1, Yang Liu1, Simran Kular1, Nick Cammack1, Peter Ferenci2, Klaus Klumpp1

1 Roche, Palo Alto, USA; 2 Medical University of Vienna, Vienna, Austria

Background: Intravenous Legalon-silibinin (SIL) is a potent antiviral agent in HCV infected persons. SIL monotherapy at 20 mg/kg resulted in significant viral load reduction in prior non-responders to pegylated interferon and ribavirin therapy (VL reduction of 3.0 ± 1.0 log IU/ml after 7 days). Antiviral potency of SIL was further increased in combination with pegylated interferon and ribavirin (VL reduction of 4.8 ± 0.9 log IU/ml after 7 days). The mechanism of action of SIL remained unresolved.

Methods: We determined the inhibitory activity of SIL and structurally related analogs in a number of HCV in vitro assay systems including subgenomic replicon, GT-1a infectious virus replication (HCVcc), HCV entry (HCVpp), RNA polymerase, protease and helicase. In addition, in vitro selection of SIL resistant replicons was performed.

Results: SIL inhibited HCV replication in the genotype 1a and 1b replicon systems with similar potency and IC50 values in the low micromolar range. SIL was not cytotoxic (CC50 > 100 μM) or cytostatic (3H-Thy incorporation IC50 > 100 μM) at these concentrations. SIL also inhibited HCV replication in the GT 1a infectious virus assay (H77–HCVcc), but did not inhibit HCV entry in either the genotype 1a or 1b cell HCVpp systems, consistent with SIL targeting HCV replication. Among the HCV replication targets, HCV protease and helicase activity were not affected by SIL, whereas RNA-dependent RNA polymerase NS5B was moderately sensitive to inhibition by SIL (IC50 = 50 ± 7.6 μM). SIL interfered with NS5B–RNA interaction, whereas preformed NS5B–RNA complexes were resistant to inhibition by SIL. Characterization of SIL analogs suggested structural features important for HCV replication inhibition. Results from the in vitro selection of SIL resistant replicon variants will be available and discussed at the time of presentation.

Conclusions: HCV replication was identified as a target of SIL. The ability of SIL to inhibit HCV RNA synthesis by HCV polymerase NS5B was consistent with inhibition of HCV replicon and HCV infectious virus replication in vitro, whereas HCV entry was not affected by the presence of SIL.

doi:10.1016/j.antiviral.2009.02.053

49

Therapeutic Efficacy of the Amphiphatic DNA Polymer REP 9AC in the Treatment of Duck Hepatitis B Virus Infection In Vivo

Faseeha Nordeen1,∗, Arend Grosse1,∗, Jean-Marc Juteau3, Andrew Vaillant3, Allison Gilber1,2

1 School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia; 2 Infectious Diseases Laboratories, SA Pathology, Adelaide, Australia; 3 REPLICor Inc., Laval, Canada

The amphiphatic DNA polymer REP 9AC has demonstrated potent antiviral activity in vitro against DHBV during viral entry and post-entry. A large amphiphatic domain related to those targeted by these compounds in type 1 virus fusion proteins is likely targeted by REP 9AC in DHBV. The therapeutic potential of REP 9AC for the treatment of HBV infection in humans was assessed using DHBV-infected Pekin ducks as a surrogate model. REP 9AC (10 mg/kg) was administered 1 day prior to, or from 4 or 14 days...